
COMPUTING THE IMPLIED VOLATILITYTHROUGH

NEURAL NETWORKSWITH ASYMPTOTIC REGIMES
Samira Amiriyan1 And Youness Boutaib 1

1Department of Mathematical Sciences, University of Liverpool, UK

Introduction

The Black-Scholes model, introduced by Fischer Black and Myron Scholes in their seminal paper [1]

has profoundly influenced modern financial theory. Among their model’s parameters for the price

of a European call C(S0, K, T, r, σ), one parameter (namely the volatility parameter σ) has attracted
considerable attention. One can observe that the Black-Scholes pricing function is monotonically

increasing with respect to its volatility parameter, σ. This property enables the definition of the

concept of implied volatility, which can be interpreted as the inverse of the Black-Scholes formula

with respect to σ, when we put it equal to real market price. The normalized Black and Scholes call

option pricing formula with Strike K and expiration time T on the underlying asset St is as follows:

CBS(A, B) = C(S0, K, T, r, σ)
S0

= Φ
(

−A

B
+ B

2

)
− Φ

(
−A

B
− B

2

)
eA,

where A = log
(

Ke−rT

S0

)
and B = σ

√
T .

Due to the complex, non-linear structure of the Black-Scholes formula, an explicit closed-form so-

lution for implied volatility does not exist. Consequently, the computation of implied volatility re-

quires the application of numerical methods, which presents both theoretical and practical challenges

in quantitative finance. Therefore, in this work, inspired by the industry’s gold standard (Jäckel’s

method) [2] and the revolution introduced by neural networks, we propose a novel type of neural

networkswith asymptotic regimes to compute impliedvolatilities. In this setting, the (log-moneyness,

price) space is partitioned into three regions based on the level of volatility, which itself depends on

the log-moneyness. For each, a neural network learns a flexible asymptotic weight function (called

modulating function) and a corresponding pricing function.

Review of the analysis of the Black and Scholes formula

In this section, we recall some properties of the Black and Scholes formula that inspire the design of

the neural network architectures in this work. Our purpose is to find, given A ≥ 0 and C ∈ (0, 1), the
value of the total variance Binv that satisfies the equation C = CBS(A, Binv).

In the problem of inverting the Black and Scholes formula, the most successful methods divide the

space (A, B) into essentially three regions

B ≤ Bl(A) , Bl(A) ≤ B ≤ Bu(A) and B ≥ Bu(A), (1)

due to the map CBS(A, .) having a different growth rate near and far from the inflection point
√

2A,
as can be seen from the partition into 3 regions illustrated in Figure 1.

Figure 1. The partition of the space (B, C) into 3 regions defined by the asymptotic to the curve CBS(A, ·). Here A = 3.

For instance, [2] champions the use of interpolation methods using rational functions for each given

value ofA (in particular, the rational cubic Hermite interpolants from [3]), while [4] suggests a uniform

approximation across the grid (A, CBS) using Chebyshev polynomials.

Inspired by [2] and [4], we take Bu(A) to be the point of intersection of the asymptotic to B →
CBS(A, B) at its inflection point

√
2Awith the valueCBS = 1, andBl(A) to be the point of intersection

of the asymptotic to B → CBS(A, B) at its inflection point
√

2A with the value CBS = 0.

The analysis yields a partition of the space of values for (A, C) into regions corresponding to different
behaviours of the implied volatility function. These are illustrated in Figure 2.

Figure 2. The partition of the space (A, C) into 3 regions defined by the inequalities (1).

Choices of architecture

Having highlighted in the previous section the different behaviours of the implied volatility in the

three regions of the domain of A and C , we present now the idea behind our design based on neural

network. The idea is to compute an expansion of the implied volatility function in the following form

(which we will label as “Free”),

Free: IV(A, C) = f0(A, C)g0(A, C) + f1(A, C)g1(A, C) + g2(A, C). (2)

In the above expression, (f0, f1) plays the role of a trainable parametric partition of unity on R+ ×R+
(but will not be one for all possible values of the parameters). We will call these the modulating

functions. The functions g0, g1, g2 approximate the implied volatility function in the correspond-

ing regions. More explicitly, g0 will be the function that dominates the approximation of the im-

plied volatility function in the region C ∈ [0, CBS(A, Bl(A))]. Similarly g1 dominates the approxi-

mation in the region C ∈ [CBS(A, Bu(A)), 1], while g2 dominates the approximation in the region

C ∈ [CBS(A, Bl(A)), CBS(A, Bu(A))].

We compare our networks with two standard neural networks, NN-Exp and NN-Simple, both learn-

ing the mapping (A, C) → B. The key difference is in the output: NN-Exp applies an exponential to

ensure positivity, while NN-Simple uses a plain linear layer.

Choices for the implied volatility functions

There are several ways in which one can choose to compute the functions gi, i ∈ {1, 2, 3}. The two
most natural ones are to either compute the gi’s using a feed-forward neural network (we label this

choice of implementation by “Gen”), or -as implied volatilities are positive- as the exponentials of the

realisation of such a neural network (labelled as “Exp”).

Choices for the modulating functions

A possible way to model a flexible asymptotic weight function for the region C → 1 is

f1(A, C) = 1

1 +
N∑

i=1
αi(A + εi)βi

(1
C − 1

)γi

,

where all the parameters αi, βi, γi and εi are trainable positive parameters. We chose to compare

two possible implementations for f1 labelled as follows:

Inv: We learn positive parameters α, β, γ and ε (as exponentials of unconstrained learnable parame-

ters) and compute

f1(A, C̃) = 1
1 + α(A + ε)βC̃γ

. (3)

where C̃ is the auxiliary variable C̃ := 1
C − 1.

Sig: Given parameters to learn α ∈ R, β > 0 and γ > 0 (where the strictly positive parameters are

learnt as exponentials of unconstrained parameters), we first compute

t1 = α − βÃlog − γC̃log,

where Ãlog := log(A) and C̃log := log
(1

C − 1
)
. The output is then obtained by the application of the

sigmoid activation function σsig on t1. Similary for C → 0 we have,

f0(A, C) = 1

1 +
N∑

i=1
αiA−βi

(1
C − 1

)−γi

.

Numerical Results

We first build a dataset of values {(Ai, Bi, Ci)}m
i=1 (where A ∈ (0, 64], B ∈ (0, 10], and C = CBS(A, B))

across a regular grid of values for (A, B) that will serve to learn the map (A, C) 7→ B (with m1 = 0.8m
points from the dataset dedicated for learning, with the remaining m2 = 0.2m points serving for

testing.) The architectures were compared across the learning dataset and the testing dataset using

the following metrics: (IV denoting the learnt map (A, C) 7→ B and k ∈ {1, 2})

1. Mean Square Error: Lk = 1
2mk

∑mk
i=1 |IV(Ai, Ci) − Bi|2.

2. Absolute residual error: ∆k = max1≤i≤mk
|IV(Ai, Ci) − Bi|.

3. Relative residual error: δk = max1≤i≤mk

|IV(Ai,Ci)−Bi|
Bi

.

The table 1 clearly shows that our networks, especially “PolyACInvGenFree” outperform the standard

neural networks, with significantly lower error. This observation is also evident in Figure 3.

Networks/Errors Test Mean Square Test Absolute residual Test Relative residual

PolyACInvGenFree 0.551887 2.871986 57.152523

PolyACSigGenFree 0.583861 2.976826 59.238846

NN-Exp 2.160205 4.292743 81.073875

NN-Simple 2.182633 4.477299 88.905853

Table 1. Comparison of Network Architectures Based on Test Error Metrics

(a) PolyACInvGenFree (b) PolyACSigGenFree

(c) NN-Exp (d) NN-Simple

Figure 3. Relative Errors Vs (A, B)

Ongoing Research

In future, in addition to implementing a more numerically accurate version of the Black and Scholes

function, possible improvements include more machine-learning friendly andmore expressive imple-

mentations of the modulating functions f0 and f1. We also aim to extend our approach to a model-

dependent framework, where the asymptotic behavior of option prices under a specific model is first

derived. The implied volatility surface is then decomposed into four regions: large maturity T , large
strike, and small strike K , and an intermediate zone. A tailored neural network architecture will be

trained to learn this composite structure.

References

[1] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of political

economy, vol. 81, no. 3, pp. 637–654, 1973.

[2] P. Jäckel, “Let’s be rational,”Wilmott, vol. 2015, no. 75, pp. 40–53, 2015.

[3] R. Delbourgo and J. A. Gregory, “Shape preserving piecewise rational interpolation,” SIAM

journal on scientific and statistical computing, vol. 6, no. 4, pp. 967–976, 1985.

[4] K. Glau, P. Herold, D. B. Madan, and C. Pötz, “The chebyshev method for the implied volatility,”

arXiv preprint arXiv:1710.01797, 2017.

5th Barcelona Summer School of Stochastic Analysis and Quantitative Finance — July 21-25, 2025 samira.amiriyan@liverpool.ac.uk

mailto:samira.amiriyan@liverpool.ac.uk

